Saturday, 19 March 2011

Oxide fuel

For fission reactors, the fuel (typically based on Uranium) is usually based on the metal oxide; the oxides are used rather than the metals themselves because the oxide melting point is much higher than that of the metal and because it cannot burn, being already in the oxidized state. The thermal conductivity of uranium dioxide is low; it is affected by porosity and burn-up. The burn-up results in fission products being dissolved in the lattice (such as lanthanides), the precipitation of fission products such as palladium, the formation of fission gas bubbles due to fission products such as xenon and krypton and radiation damage of the lattice. The low thermal conductivity can lead to overheating of the center part of the pellets during use. The porosity results in a decrease in both the thermal conductivity of the fuel and the swelling which occurs during use.

According to the International Nuclear Safety Center [1] the thermal conductivity of uranium dioxide can be predicted under different conditions by a series of equations.

The bulk density of the fuel can be related to the thermal conductivity

Where ρ is the bulk density of the fuel and ρtd is the theoretical density of the uranium dioxide.

Then the thermal conductivity of the porous phase (Kf) is related to the conductivity of the perfect phase (Ko, no porosity) by the following equation. Note that s is a term for the shape factor of the holes.

    Kf = Ko(1 − p/1 + (s − 1)p)

Rather than measuring the thermal conductivity using the traditional methods in physics such as Lees's disk, the Forbes' method or Searle's bar it is common to use a laser flash method where a small disc of fuel is placed in a furnace. After being heated to the required temperature one side of the disc is illuminated with a laser pulse, the time required for the heat wave to flow through the disc, the density of the disc, and the thickness of the disk can then be used to calculated to give the thermal conductivity.

    λ = ρCpα

    * λ thermal conductivity
    * ρ density
    * Cp heat capacity
    * α thermal diffusivity

If t1/2 is defined as the time required for the non illuminated surface to experience half its final temperature rise then.

    α = 0.1388 L2/t1/2

    * L is the thickness of the disc

For details see [2]
UOX
The thermal conductivity of zirconium metal and uranium dioxide as a function of temperature

Uranium dioxide is a black semiconductor solid. It can be made by reacting uranyl nitrate with a base (ammonia) to form a solid (ammonium uranate). It is heated (calcined) to form U3O8 that can then be converted by heating in an argon / hydrogen mixture (700 °C) to form UO2. The UO2 is then mixed with an organic binder and pressed into pellets, these pellets are then fired at a much higher temperature (in H2/Ar) to sinter the solid. The aim is to form a dense solid which has few pores.

The thermal conductivity of uranium dioxide is very low compared with that of zirconium metal, and it goes down as the temperature goes up.

It is important to note that the corrosion of uranium dioxide in an aqueous environment is controlled by similar electrochemical processes to the galvanic corrosion of a metal surface.
MOX
Main article: MOX fuel

Mixed oxide, or MOX fuel, is a blend of plutonium and natural or depleted uranium which behaves similarly (though not identically) to the enriched uranium feed for which most nuclear reactors were designed. MOX fuel is an alternative to low enriched uranium (LEU) fuel used in the light water reactors which predominate nuclear power generation.

Some concern has been expressed that used MOX cores will introduce new disposal challenges, though MOX is itself a means to dispose of surplus plutonium by transmutation.

Currently (March, 2005) reprocessing of commercial nuclear fuel to make MOX is done in England and France, and to a lesser extent in Russia, India and Japan. China plans to develop fast breeder reactors and reprocessing.

The Global Nuclear Energy Partnership, is a U.S. plan to form an international partnership to see spent nuclear fuel reprocessed in a way that renders the plutonium in it usable for nuclear fuel but not for nuclear weapons. Reprocessing of spent commercial-reactor nuclear fuel has not been permitted in the United States due to nonproliferation considerations. All of the other reprocessing nations have long had nuclear weapons from military-focused "research"-reactor fuels except for Japan.

No comments:

Post a Comment